Parabolic Fractional Maximal Operator in Modified Parabolic Morrey Spaces
نویسندگان
چکیده
منابع مشابه
Boundedness of the Fractional Maximal Operator in Local Morrey-type Spaces
The problem of the boundedness of the fractional maximal operator Mα, 0 ≤ α < n in local Morrey-type spaces is reduced to the problem of the boundedness of the Hardy operator in weighted Lp-spaces on the cone of non-negative non-increasing functions. This allows obtaining sharp sufficient conditions for the boundedness for all admissible values of the parameters.
متن کاملMaximal regularity in continuous interpolation spaces and quasilinear parabolic equations
In this paper we establish a geometric theory for abstract quasilinear parabolic equations. In particular, we study existence, uniqueness, and continuous dependence of solutions. Moreover, we give conditions for global existence and establish smoothness properties of solutions. The results are based on maximal regularity estimates in continuous interpolation spaces. An important new ingredient ...
متن کاملAvoiding Maximal Parabolic
Let [p] = {1, . . . , p} denote a totally ordered alphabet on p letters, and let α = (α1, . . . , αm) ∈ [p1] , β = (β1, . . . , βm) ∈ [p2] . We say that α is order-isomorphic to β if for all 1 6 i < j 6 m one has αi < αj if and only if βi < βj . For two permutations π ∈ Sn and τ ∈ Sk, an occurrence of τ in π is a subsequence 1 6 i1 < i2 < · · · < ik 6 n such that (πi1 , . . . , πik) is order-is...
متن کاملParabolic Marcinkiewicz integrals on product spaces
In this paper, we study the $L^p$ ($1
متن کاملNecessary and Sufficient Conditions for the Boundedness of Dunkl-Type Fractional Maximal Operator in the Dunkl-Type Morrey Spaces
and Applied Analysis 3 For all x, y, z ∈ R, we put Wα ( x, y, z ) : ( 1 − σx,y,z σz,x,y σz,y,x ) Δα ( x, y, z ) , 2.5
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Function Spaces and Applications
سال: 2012
ISSN: 0972-6802,1758-4965
DOI: 10.1155/2012/543475